
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/327125660

node2defect: using network embedding to improve software defect prediction

Conference Paper · September 2018

DOI: 10.1145/3238147.3240469

CITATIONS

17
READS

1,592

7 authors, including:

Some of the authors of this publication are also working on these related projects:

Securing Outsourced Data in Cloud with SGX View project

Yu Qu

University of California, Riverside

27 PUBLICATIONS 307 CITATIONS

SEE PROFILE

Ting Liu

Xi'an Jiaotong University

132 PUBLICATIONS 2,384 CITATIONS

SEE PROFILE

Di Cui

Xidian University

18 PUBLICATIONS 185 CITATIONS

SEE PROFILE

Qinghua Zheng

Xi'an Jiaotong University

500 PUBLICATIONS 6,525 CITATIONS

SEE PROFILE

All content following this page was uploaded by Yu Qu on 20 January 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/327125660_node2defect_using_network_embedding_to_improve_software_defect_prediction?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/327125660_node2defect_using_network_embedding_to_improve_software_defect_prediction?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Securing-Outsourced-Data-in-Cloud-with-SGX?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yu-Qu-3?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yu-Qu-3?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-California-Riverside?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yu-Qu-3?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ting-Liu-130?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ting-Liu-130?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xian_Jiaotong_University?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ting-Liu-130?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Di-Cui-7?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Di-Cui-7?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xidian-University?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Di-Cui-7?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinghua-Zheng?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinghua-Zheng?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xian_Jiaotong_University?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinghua-Zheng?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yu-Qu-3?enrichId=rgreq-5b47528ba199203aa08da89ad7684012-XXX&enrichSource=Y292ZXJQYWdlOzMyNzEyNTY2MDtBUzo3MTcxNDk0OTI0ODIwNDlAMTU0Nzk5MzE3MTE4OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

node2defect: Using Network Embedding to Improve Software
Defect Prediction

Yu Qu
Ministry of Education Key Lab For
Intelligent Networks and Network
Security, Xi’an Jiaotong University,

China
quyuxjtu@xjtu.edu.cn

Ting Liu
School of Electronic and Information

Engineering, Xi’an Jiaotong
University, China
tingliu@xjtu.edu.cn

Jianlei Chi
Xi’an Jiaotong University, China

chijianlei@stu.xjtu.edu.cn

Yangxu Jin
Xi’an Jiaotong University, China

jyx530@stu.xjtu.edu.cn

Di Cui
Xi’an Jiaotong University, China

cuidi@stu.xjtu.edu.cn

Ancheng He
Xi’an Jiaotong University, China
hg19941996@stu.xjtu.edu.cn

Qinghua Zheng
Xi’an Jiaotong University, China

qhzheng@xjtu.edu.cn

ABSTRACT
Network measures have been proved to be useful in predicting soft-
ware defects. Leveraging the dependency relationships between
software modules, network measures can capture various structural
features of software systems. However, existing studies have relied
on user-defined network measures (e.g., degree statistics or cen-
trality metrics), which are inflexible and require high computation
cost, to describe the structural features. In this paper, we propose
a new method called node2defect which uses a newly proposed
network embedding technique, node2vec, to automatically learn to
encode dependency network structure into low-dimensional vector
spaces to improve software defect prediction. Specifically, we firstly
construct a program’s Class Dependency Network. Then node2vec
is used to automatically learn structural features of the network. Af-
ter that, we combine the learned features with traditional software
engineering features, for accurate defect prediction. We evaluate
our method on 15 open source programs. The experimental results
show that in average, node2defect improves the state-of-the-art
approach by 9.15% in terms of F-measure.

CCS CONCEPTS
• Software and its engineering → Risk management; Maintain-
ing software;

KEYWORDS
Software defect, defect prediction, software metrics, network em-
bedding

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3240469

ACM Reference Format:
Yu Qu, Ting Liu, Jianlei Chi, Yangxu Jin, Di Cui, Ancheng He, and Qinghua
Zheng. 2018. node2defect: Using Network Embedding to Improve Software
Defect Prediction. In Proceedings of the 2018 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE ’18), September 3–7,
2018, Montpellier, France. ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/3238147.3240469

1 INTRODUCTION
Software defect prediction is the process of building machine learn-
ing classifiers to predict code regions that potentially have defects
[9, 19, 26]. Defect prediction techniques can provide useful guid-
ances for code reviewers or software testers to allocate their limited
resources more effectively, thus is very useful in software engineer-
ing practices [9, 19, 26].

Network measures have been proved to be useful in predicting
software defects (e.g., [6, 14, 16, 19, 21, 24, 26]). Exploiting the depen-
dency relationships between software modules, network measures
can capture various structural features of software systems. Thus,
they are very useful in software defect prediction. For instance, in
their seminal study, Zimmermann and Nagappan [26] proposed to
use network measures on the dependency graph of a software sys-
tem in defect prediction. Recently, Ma et al. [16] further evaluated
the predictive effectiveness of network measures in effort-aware
bug prediction. Chen et al. [6] used network measures to predict
high severity software bugs, and they found that most network
measures were significantly related to high severity bug-proneness.

However, these network measures (e.g., degree statistics or cen-
trality metrics) are traditionally user-defined, which has been be-
lieved to be inflexible and require human designing efforts [12].
These measures are also believed to suffer from the high computa-
tion and space cost [5]. Thus, network embedding (graph embedding)
techniques [10, 12], which automatically learn to encode network
structure into low-dimensional vector space, have drawn increasing
attentions in the machine learning community and shown their
advantages over user-defined measures in many machine learning
tasks [10, 12].

844

https://doi.org/10.1145/3238147.3240469
https://doi.org/10.1145/3238147.3240469
https://doi.org/10.1145/3238147.3240469

ASE ’18, September 3–7, 2018, Montpellier, France YuQu, Ting Liu, Jianlei Chi, Yangxu Jin, Di Cui, Ancheng He, and Qinghua Zheng

Considering this new research trend, in this paper, we propose
a new method called node2defect which uses a new network em-
bedding technique, node2vec [11], to automatically learn structural
features of software Class Dependency Network to improve soft-
ware defect prediction.

In node2defect, the Class Dependency Network (CDN) of the
program under analysis is firstly constructed. Then node2vec is used
to automatically learn structural features of CDN. For each node
(i.e., each class) in CDN, node2vec automatically learns a vector
to encode its structural feature. Then node2defect concatenates
the class’s feature vector with its traditional software engineering
features, such as cohesion and coupling metrics [7], to form the new
feature of this class. Then the new feature is used in software defect
prediction. Experimental results show that the proposed node2defect
approach can improve software defect prediction nontrivially. The
F-measure is improved by 9.15% in average.

In summary we make the following contributions in this paper:
(1) a new network embedding technique, node2vec, is used to au-

tomatically learn structural features of software Class Dependency
Networks; (2) we propose a new method named as node2defect,
which exploits network embedding technique and combines with
traditional software engineering metrics, to improve defect predic-
tion; (3) experiments on 15 Java open source programs show that
the proposed method can nontrivially improve defect prediction
models’ performances.

2 BACKGROUND
2.1 Class Dependency Network
In this section, the basic concept of Class Dependency Network is
introduced based on an illustrative example.

For an OO program P , its Class Dependency Network CDN P is
a directed network [23]: CDN P = (V ,E), where each node v ∈ V
represents a class in P , and the edge set E represents the class
dependency relationships. Let ci denotes the class that vi refers to.
Thenvi → vj ∈ E if and only if ci has at least one class dependency
relation with c j .

Figure 1 (a) gives an illustrative example Java code snippet. For
this code snippet, Figure 1 (b) shows its Class Dependency Network
(CDN) [23]. Although other work [2, 8, 15] usually only gave the
processes to construct the class networks, the intrinsic nature of
these networks is the same as CDN’s. In CDN, nodes are classes
and edges represent class dependency relations. As shown in Figure
1, these dependency relations include aggregation (A→B, A→C,
and B→D), inheritance (D→C), interface implementation (D→I),
parameter types (C→B) and return types.

2.2 The node2vec Technique
In this section, we firstly give a brief introduction on network
embedding, followed by a brief discussion on node2vec.

For a network N = (V ,E), a network embedding is a mapping
f : vi → yi ∈ R

d ,∀vi ∈ V such that d ≪ |V | and the function f
preserves some proximity measure defined on network N [10].

The conceptual framework of node2vec [11] is shown in Figure
2. Briefly, node2vec algorithm is based on and motivated by a Natu-
ral Language Processing (NLP) model – Skip-gram [18], and then

A

B

D

C

I

interface I {
public int add(int i);

}

public class A {
public static void main(String[] args) {

B b = new B();
System.out.println(b.counter);
b.m1();
C c = new C();
c.m2(b);

}
}

class B {
public int counter=1;
private D d = new D();
public void m1() {

counter=d.add(counter);
System.out.println(counter);

}
}

class C {
public void m2(B b) {

b.counter=b.counter+1;
System.out.println(b.counter);

}
}

class D extends C implements I {
public int add(int i) {

return i+1;
}

}

 (a)

 (b)

Figure 1: A Class Dependency Network example.

proposes a flexible random walk approach to generate (sample)
network neighborhoods for nodes.

Specifically, Skip-gram model is one of the two basic models of
the NLP technique – word2vec [18] (the other one is Continuous
Bag of Words model, CBOW). Skip-gram aims to maximize the
co-occurrence probability among the words that appear within a
sliding window. Such process is realized by solving an optimization
problem using Stochastic Gradient Descent (SGD) and backpropa-
gation on single hidden-layer feedforward neural network.

As shown in Figure 2, node2vec firstly samples a set of paths
(walks) from the input network using their new fixed length random
walk approach. Each path sampled from the network corresponds
to a sentence from the corpus in NLP, where a node corresponds to
a word. Then Skip-gram is applied on the paths to maximize the
probability of observing a node’s neighborhood conditioned on its
embedding. As the authors stated [11], given the linear nature of
text in NLP, the notion of neighborhood can be naturally defined
using a sliding window over consecutive words. However, networks
(such as CDNs in this paper) are not linear, thus a richer notion of
neighborhood is needed. In a word, the key contribution of node2vec
is in defining a flexible notion of a node’s network neighborhood
by providing a trade-off between Breadth-first Sampling (BFS) and
Depth-first Sampling (DFS) graph searching strategies. Figure 2
also shows BFS and DFS examples given a source node C7.

A new 2nd order random walk is defined in node2vec with two
parameters p and q which control the transition probability during
the walk, as shown in Figure 2. The parameters p and q are named
as return parameter and in-out parameter, respectively. Interested
readers are referred to the original paper [11] for more details.

It is worth noting that the time complexity of node2vec isO (|V | d)
[10]. Existing network measures usually have more expensive time
complexities. For instance, the metric Betweenness Centrality has
been intensively used in existing researches [6, 16, 19, 21, 24, 26].
The time complexity of Betweenness Centrality isO (|V | |E |) on un-
weighted network [3]. Considering d ≪ |V |, |V | is usually smaller
than |E | (see the statistics in Table 1) and there are usually more
than 10 metrics are computed in existing researches, so the existing
methods usually require much higher computation and space cost.

845

node2defect: Using Network Embedding to Improve Software Defect Prediction ASE ’18, September 3–7, 2018, Montpellier, France

C11

C13

C9

C8

C12

C3

C2

C1

C10

C7

C6

C5

C4

Walk 1: C7,C4,C8,...

Walk 2: C5,C7,C3,...

Walk 3: C9,C8,C10,...

0

0

0

0

0

1

0

0

0

∑

∑

∑

∑

∑

∑

∑

... ...

DFS

Input
Layer

Hidden
Layer

Output
Layer

...

BFS

Skip-gram model

a=1/p

a=1/q

a=1/q

a=1

Figure 2: The conceptual framework of node2vec.

3 THE PROPOSED APPROACH:
NODE2DEFECT

In this section, we introduce node2defect’s framework based on a
real and simple example. Figure 3 shows the process of node2defect
when a package of Ant, org.apache.tools.ant.input, is consid-
ered in the analyzing process of node2defect. For this package, Fig-
ure 3 depicts its CDN when only considering the class dependency
relationships within this package (in practice, the dependency rela-
tionships within the whole system are considered). Based on the
constructed CDN, node2vec is used to automatically learn a vector
for each node (i.e., each class) in the CDN. For the simplicity of
illustration, as shown in Figure 3, the vector’s dimension (d) is
set as 8. In experiments in this paper, we use 32 as the dimension
of the learned vector. Since the learned vector only quantify the
structural features of a class, but the defectiveness of a class are the
consequences of many complicated and inter-played quality factors,
e.g., the software architecture and the programmer’s perception
on the programming language. To more accurately predict defects,
node2defect also computes traditional software engineering metrics,
e.g., Lack of Cohesion in Methods (LCOM), Coupling Between Ob-
ject classes (CBO), and Depth of Inheritance Tree (DIT) [7]. Then
node2defect concatenates the learned vector with traditional met-
rics and uses the concatenated vector as the features that are fed
into the subsequent machine learning classifiers. In the evaluation
part of this paper, traditional software engineering metrics alone
are used as the traditional approach and baseline metrics. Table
2 in the appendix part of this paper shows the traditional software
engineering metrics used in this study.

4 EXPERIMENTS
4.1 Subject Software Systems
To evaluate the practical application of node2defect, a data set con-
taining 15 large open-source andwidely-used Java software systems
is collected, as shown in Table 1.

Ant is a command-line tool for automating software build pro-
cesses; Camel is an integration framework; DrJava is a Java de-
velopment environment; GenoViz is a tool for data visualization
and sharing in genomics; jEdit is a text editor; Ivy is a transitive
dependency manager; Jmri is a building tool for modelling rail-
road computer control; Jmol is a browser-based HTML5 viewer
and stand-alone viewer for chemical structures in 3D; Jppf is an
open-source grid computing solution; Lucene is a searching and
information retrieval library; Poi a library to process Microsoft

Office files; Synapse is a high-performance Enterprise Service Bus
(ESB); Tomcat is a web server and servlet container; Velocity is a
template engine to reference objects defined in Java code; Xalan is
a library for processing XML documents.

All the defect data of these subject systems is collected from
publicly available software defect data repository. Among these
subject systems, the defect data of Ant, Camel, jEdit, Ivy, Lucene,
Poi, Synapse, Tomcat, Velocity, and Xalan is obtained from the
tera-PROMISE data repository1 [17]. The defect data of DrJava,
Genoviz, Jmri, Jmol, and Jppf is obtained from a newly released
data set2 which has been contributed by Shippey et al. in their ESEM
2016 paper [22]. To ensure the reproducibility of this study, we use
the metrics extracted and contained in these tow data sets as the
traditional software engineering metrics. Table 2 in the appendix
part of this paper shows the metrics in tera-PROMISE data set.

Table 1 gives the statistics of these systems and their CDNs. The
data in each column in Table 1 is interpreted as follows:

Column Version shows the version of the corresponding sys-
tem that is contained in the aforementioned two defect data sets.
Columns SLOC, # Class, show the Source Lines Of Code and the
number of classes of the subject systems, respectively. Column
NCDN and ECDN show the number of nodes and edges of each
CDN, respectively. In the construction processes of CDNs, only
when a class has certain dependency relations with other classes,
its corresponding node is added into CDN. Thus, NCDN is slightly
smaller than the total number of classes in Column # Class.

Column |CRD
⋂
CCDN | shows the number of classes that appear

both in CDN and the defect data sets, in the latter they haveRecords
to signify they are Defective or not. pDef ect is the percentage
of defective classes in CRD

⋂
CCDN . The last column shows the

websites of these systems.

4.2 Experiment Design
In the evaluation, we investigated the effectiveness of node2defect
in the following two defect prediction experiments:

(1) Cross-validation
Cross-validation is a most widely-used method to evaluate de-

fect prediction models. We used three-fold cross-validation in this
experiment. Specifically, in each single run of this experiment, the
original bug data set is randomly split into three parts, two thirds
of the instances are used to train the bug prediction model, and the

1http://openscience.us/repo/
2https://github.com/tjshippey/ESEM2016

846

ASE ’18, September 3–7, 2018, Montpellier, France YuQu, Ting Liu, Jianlei Chi, Yangxu Jin, Di Cui, Ancheng He, and Qinghua Zheng

Java source
code

Class Dependency
Network Construction

Traditional Software
Engineering Metrics

Computation

node2vec

org.apache.tools.ant.input.MultipleChoiceInputRequest

org.apache.tools.ant.input.GreedyInputHandler

org.apache.tools.ant.input.InputHandler

org.apache.tools.ant.input.DefaultInputHandler

org.apache.tools.ant.input.InputRequest

org.apache.tools.ant.input.PropertyFileInputHandler

org.apache.tools.ant.input.InputRequest[-0.058702353 -0.30814624 0.026793016 -0.31827274 0.58192813 -0.61093503 0.42393044 0.6534702]
org.apache.tools.ant.input.DefaultInputHandler[-0.10695754 -0.3405749 0.07957265 -0.32303774 0.5483531 -0.5614255 0.4939441 0.58108336]
org.apache.tools.ant.input.InputHandler[-0.007756241 -0.35085854 0.015609294 -0.33909693 0.49364707 -0.53529495 0.46202803 0.5968667]
org.apache.tools.ant.input.MultipleChoiceInputRequest[-0.072836295 -0.39161333 0.032675438 -0.3984309 0.4961228 -0.53556526 0.44348758 0.576996]
org.apache.tools.ant.input.GreedyInputHandler[-0.119577974 -0.38832504 0.089602195 -0.35205036 0.50758743 -0.56895405 0.40370262 0.5736593]
org.apache.tools.ant.input.PropertyFileInputHandler[-0.05327967 -0.41166085 -0.030973656 -0.33396712 0.57509446 -0.5737426 0.5167388 0.51834387]

LCOM

CBO
DIT

...

Traditional Metrics

Concatenated Metrics Machine Learning
Classifiers

Figure 3: node2defect’s framework. A Java library and command-line tool – Ant’s CDN is depicted as an illustrating example.

Table 1: Subject software systems

System Version SLOC # Class NCDN ECDN |CRD
⋂
CCDN | pDef ect Website

Ant 1.7.0 93,520 1,068 1,060 3,770 739 22.5% https://ant.apache.org/
Camel 1.6.0 98,962 2,193 2,140 6,209 907 20.7% https://camel.apache.org/
DrJava 20080106 67,958 814 792 2,385 515 20.4% http://drjava.org/
Genoviz 6.0 91,307 704 693 3,279 633 32.4% https://sourceforge.net/projects/genoviz/
jEdit 4.1 69,272 622 614 1,806 308 25.6% http://jedit.org/
Ivy 2.0 36,636 421 418 1,851 349 11.5% http://ant.apache.org/ivy/
Jmri 2.4 206,551 2,241 2,206 6,941 2,020 23.3% http://jmri.sourceforge.net/
Jmol 6.0 29,855 291 282 648 158 43.7% http://jmol.sourceforge.net/
Jppf 5.0 68,765 1,621 1,412 4,550 1,025 15.4% http://jppf.org/

Lucene 2.4.0 35,984 460 457 1,879 340 60.1% http://lucene.apache.org/
Poi 3.0 53,097 511 505 2,473 435 64.1% http://poi.apache.org/

Synapse 1.2 46,060 573 546 1,811 250 34% http://synapse.apache.org/
Tomcat 6.0.38 166,396 1,481 1,450 6,371 812 9.5% http://tomcat.apache.org/
Velocity 1.6.1 26,636 254 253 1,236 228 34.2% http://velocity.apache.org/
Xalan 2.6.0 155,067 1,039 1,014 6,007 884 45.5% http://xalan.apache.org/

rest of the instances are used to evaluate the model. For each sub-
ject system, we repeated the experiment for 30 times to reduce the
bias caused by the random split of instances. The machine learning
algorithm Random Forest [4] is used in this experiment.

(2) Adaptive Selection of Classifiers in bug prediction (ASCI) [20]
ASCI is an adaptive defect prediction method, which has been

recently proposed by Nucci et al [20]. ASCI can dynamically se-
lect among a set of machine learning classifiers the one which is
more suitable to predict a class’s defectiveness. The original im-
plementation of ASCI has integrated five different machine learn-
ing classifiers [1], namely Logistic Regression (LOG), Naive Bayes
(NB), Radial Basis Function Network (RBF), Multi-Layer Perceptron
(MLP), and Decision Trees (DTree). Thus, ASCI can provide more
thorough evaluation on node2defect. We adopted ASCI’s original
implementation, in which 10-fold cross-validation is used.

To evaluate the defect prediction model’s performance, we use
widely adopted metrics in literature [25]: (1) the F-measure, which
is the harmonic mean of precision and recall, and (2) the Area Under
the Curve (AUC), which quantifies the overall ability of a prediction
model to discriminate between defective and clean classes. 100%
AUC represents an ideal prediction result.

4.3 Experimental Results and Discussion
Figure 4 and 5 show the experimental results of the cross-validation
and ASCI experiments, respectively. In each figure, the average
(mean) values of F-measure and AUC are shown. Based on Figure

4, it can be observed that in the cross-validation experiment, the
defect prediction model’s performance is improved for all the sub-
ject systems, when node2defect is used. The value of F-measure is
improved by 9.2% in average, and the value of AUC is improved by
3.86% in average.

Similarly, based on Figure 5, it can observed that in the ASCI
experiment, the defect prediction model’s performance is improved
for almost all the subject systems, when node2defect is used. The
value of F-measure only declines slightly for Ivy and Velocity, and
the value of AUC also only declines slightly for Jmri and Tomcat,
when node2defect is used. The value of F-measure is improved
by 9.1% in average, and the value of AUC is improved by 5.6% in
average. We also used the Wilcoxon signed-rank tests to evaluate
the differences between results of approaches. The p-values of the
Wilcoxon signed-rank tests confirm that the differences between
results of approaches are significant at the 0.05 level.

In aword, in the experiments, the proposed approach – node2defect
improves the performances of defect prediction models in most
of the cases. And the improvements are nontrivial (greater than
9% in terms of F-measure), which mean that network embedding
techniques are indeed helpful in software defect prediction, as they
can learn the structural features of software modules automati-
cally, which can reflect the ways how the modules depends on and
interact with each other.

Here we give a possible explanation for these experimental re-
sults. As discussed in [11], prediction tasks on nodes in networks

847

node2defect: Using Network Embedding to Improve Software Defect Prediction ASE ’18, September 3–7, 2018, Montpellier, France

F-measure comparison between traditional approach and node2defect in cross validation

Ant Camel DrJava Genoviz Ivy jEdit Jmol Jmri Jppf Lucene Poi Synapse Tomcat Velocity Xalan

Subject Systems

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
-m

e
a
s
u

re
 V

a
lu

e
s

Traditional

node2defect

AUC comparison between traditional approach and node2defect in cross validation

Ant Camel DrJava Genoviz Ivy jEdit Jmol Jmri Jppf Lucene Poi Synapse Tomcat Velocity Xalan

Subject Systems

0

0.2

0.4

0.6

0.8

1

A
U

C
 V

a
lu

e
s

Traditional

node2defect

Figure 4: F-measure and AUC comparisons between traditional approach and node2defect in cross validation.

F-measure comparison between traditional approach and node2defect with ASCI

Ant Camel DrJava Genoviz Ivy jEdit Jmol Jmri Jppf Lucene Poi Synapse Tomcat Velocity Xalan

Subject Systems

0

0.2

0.4

0.6

0.8

1

F
-m

e
a
s
u

re
 V

a
lu

e
s

Traditional+ASCI

node2defect+ASCI

AUC comparison between traditional approach and node2defect with ASCI

Ant Camel DrJava Genoviz Ivy jEdit Jmol Jmri Jppf Lucene Poi Synapse Tomcat Velocity Xalan

Subject Systems

0

0.2

0.4

0.6

0.8

1

A
U

C
 V

a
lu

e
s

Traditional+ASCI

node2defect+ASCI

Figure 5: F-measure and AUC comparisons between traditional approach and node2defect with ASCI.

often shuttle between two kinds of similarities: homophily and
structural equivalence. Homophily means that nodes belonging to
similar communities should be embedded closely. Structural equiv-
alence means that nodes that have similar structural roles should be
embedded closely. Among the two sampling strategies, BFS leads
to structural equivalence and DFS leads to homophily [11].

On the other hand, as discussed by Nguyen et al. [19], the net-
work metric nWeakComp in, which is the number of unconnected
components in the incoming ego network, is a good defect predictor.
It means that for a certain class, if all the dependent classes are

completely independent from each other, then the risk of failure for
this class is higher than when they are interdependent. As shown
in Figure 2, node C7 and C8 have high nWeakComp in scores (which
is 4, repectively). From network embedding perspective, C7 and C8
plays similar roles in their communities (they are hubs of their cor-
responding communities), thus their structural equivalence can be
captured by BFS and finally be reflected in the embedding vectors.

To sum up, network embedding techniques can capture similar
structural properties of classes, thus classes with similar structural
defect risks are close to each other in the low dimensional vector

848

ASE ’18, September 3–7, 2018, Montpellier, France YuQu, Ting Liu, Jianlei Chi, Yangxu Jin, Di Cui, Ancheng He, and Qinghua Zheng

Table 2: Traditional software engineering metrics

Metrics Name Symbol

Average Method Complexity AMC
Average McCabe Avg_CC
Afferent couplings Ca

Cohesion among Methods of class CAM
Coupling Between Methods CBM

Coupling Between Object classes CBO
Efferent couplings Ce
Data Access Metric DAM

Depth of Inheritance Tree DIT
Depth of Inheritance Coupling IC
Lack of Cohesion in Methods LCOM
Lack of Cohesion in Methods 3 LCOM3

Lines of Code LOC
Maximum McCabe Max_CC

Measure of Function Abstraction MFA
Measure of Aggregation MOA
Number of Children NOC

Number of Public Methods NPM
Response for a Class RFC

Weighted Methods per Class WMC

space. Such properties might be one of the reasons that network
embedding can improve defect prediction.

5 CONCLUSION
In this paper, we have proposed a new method called node2defect
which uses a newly proposed network embedding technique based
on randomwalk, node2vec, to automatically learn structural features
of software Class Dependency Networks to improve software de-
fect prediction. Network embedding technique can encode classes’
dependency relationships into low-dimensional vector space, thus
provide a new perspective for defect prediction. node2defect also
combines the learned structural vector with traditional software
engineering metrics to predict defects more accurately. Experimen-
tal results based on 15 open source Java programs have shown that
node2defect can improve the state-of-the-art approach, in which
the traditional software engineering metrics are used alone, by
9.15% in terms of F-measure. In the future, we plan to use more
network embedding techniques in software defect prediction. We
also plan to study the approach that are suitable for cross-version
and cross-project defect prediction.

A APPENDIX: TRADITIONAL METRICS
Table 2 shows the metrics of subject systems in tera-PROMISE data
set [13], which are used as traditional software engineering metrics
in this study. The other five subject systems’ traditional metrics are
extracted using the JHawk tool3 [22].

ACKNOWLEDGMENTS
This work is partially supported by the National Natural Science
Foundation of China (61602369, 61472318, 61632015, 61721002), Min-
istry of Education Innovation Research Team (IRT_17R86), National
Key Research andDevelopment Program of China (2016YFB0800202),
Shaanxi Province postdoctoral research project funding (2016BSHED
ZZ108), Project of China Knowledge Centre for Engineering Science
and Technology.

3http://www.virtualmachinery.com/Jhawkmetricslist.htm

REFERENCES
[1] Ethem Alpaydin. 2004. Introduction to Machine Learning. MIT Press,. 28 pages.
[2] Gareth Baxter, Marcus Frean, James Noble, Mark Rickerby, Hayden Smith, Matt

Visser, Hayden Melton, and Ewan Tempero. 2006. Understanding the shape of
Java software. Acm Sigplan Notices 41, 10 (2006), 397–412.

[3] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. Journal of
mathematical sociology 25, 2 (2001), 163–177.

[4] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32.
[5] HongyunCai, VincentWZheng, and Kevin Chang. 2018. A comprehensive survey

of graph embedding: problems, techniques and applications. IEEE Transactions
on Knowledge and Data Engineering (2018).

[6] Lin Chen, Wanwangying Ma, Yuming Zhou, Lei Xu, Ziyuan Wang, Zhifei Chen,
and Baowen Xu. 2016. Empirical analysis of network measures for predicting
high severity software faults. Science China Information Sciences 59, 12 (2016),
122901.

[7] Shyam R Chidamber and Chris F Kemerer. 1994. A metrics suite for object
oriented design. IEEE Transactions on software engineering 20, 6 (1994), 476–493.

[8] Giulio Concas, Michele Marchesi, Cristina Monni, Matteo Orrù, and Roberto
Tonelli. 2017. Software Quality and Community Structure in Java Software Net-
works. International Journal of Software Engineering and Knowledge Engineering
27, 07 (2017), 1063–1096.

[9] Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, and Federica Sarro.
2011. A genetic algorithm to configure support vector machines for predicting
fault-prone components. In International Conference on Product Focused Software
Process Improvement. Springer, 247–261.

[10] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications,
and performance: A survey. Knowledge-Based Systems 151 (2018), 78–94.

[11] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning
for Networks. In Acm Sigkdd International Conference on Knowledge Discovery &
Data Mining. 855–864.

[12] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation Learning
on Graphs: Methods and Applications. arXiv preprint arXiv:1709.05584 (2017).

[13] Marian Jureczko and Lech Madeyski. 2010. Towards identifying software project
clusters with regard to defect prediction. In Proceedings of the 6th International
Conference on Predictive Models in Software Engineering. ACM, 9.

[14] Yihao Li. 2017. Applying Social Network Analysis to Software Fault-Proneness
Prediction. Ph.D. Dissertation. University of Texas at Dallas.

[15] Panagiotis Louridas, Diomidis Spinellis, and Vasileios Vlachos. 2008. Power laws
in software. ACM Transactions on Software Engineering and Methodology (TOSEM)
18, 1 (2008), 2.

[16] Wanwangying Ma, Lin Chen, Yibiao Yang, Yuming Zhou, and Baowen Xu. 2016.
Empirical analysis of network measures for effort-aware fault-proneness predic-
tion. Information and Software Technology 69 (2016), 50–70.

[17] Tim Menzies, Rahul Krishna, and David Pryor. 2015. The Promise Repository
of Empirical Software Engineering Data. http://openscience.us/repo. North
Carolina State University, Department of Computer Science.

[18] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[19] Thanh HD Nguyen, Bram Adams, and Ahmed E Hassan. 2010. Studying the
impact of dependency network measures on software quality. In Software Main-
tenance (ICSM), 2010 IEEE International Conference on. IEEE, 1–10.

[20] Dario Di Nucci, Fabio Palomba, Rocco Oliveto, and Andrea De Lucia. 2017. Dy-
namic Selection of Classifiers in Bug Prediction: An Adaptive Method. IEEE
Transactions on Emerging Topics in Computational Intelligence 1, 3 (2017), 202–
212.

[21] Rahul Premraj and Kim Herzig. 2011. Network Versus Code Metrics to Predict
Defects: A Replication Study. In International Symposium on Empirical Software
Engineering and Measurement. 215–224.

[22] Thomas Shippey, Tracy Hall, Steve Counsell, and David Bowes. 2016. So You
NeedMore Method Level Datasets for Your Software Defect Prediction?: Voilà!. In
Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. ACM, 12.

[23] Lovro Šubelj and Marko Bajec. 2011. Community structure of complex software
systems: Analysis and applications. Physica A: Statistical Mechanics and its
Applications 390, 16 (2011), 2968–2975.

[24] Ayşe Tosun, Burak Turhan, and Ayşe Bener. 2009. Validation of networkmeasures
as indicators of defective modules in software systems. In Proceedings of the 5th
international conference on predictor models in software engineering. ACM, 5.

[25] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. 2016. Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann.

[26] Thomas Zimmermann and Nachiappan Nagappan. 2008. Predicting defects using
network analysis on dependency graphs. In Software Engineering, 2008. ICSE’08.
ACM/IEEE 30th International Conference on. IEEE, 531–540.

849

View publication stats

https://www.researchgate.net/publication/327125660

	Abstract
	1 Introduction
	2 Background
	2.1 Class Dependency Network
	2.2 The node2vec Technique

	3 The Proposed Approach: node2defect
	4 Experiments
	4.1 Subject Software Systems
	4.2 Experiment Design
	4.3 Experimental Results and Discussion

	5 Conclusion
	A Appendix: Traditional Metrics
	Acknowledgments
	References

